Your data on MRCVSonline
The nature of the services provided by Vision Media means that we might obtain certain information about you.
Please read our Data Protection and Privacy Policy for details.

In addition, (with your consent) some parts of our website may store a 'cookie' in your browser for the purposes of
functionality or performance monitoring.
Click here to manage your settings.
If you would like to forward this story on to a friend, simply fill in the form below and click send.

Your friend's email:
Your email:
Your name:
 
 
Send Cancel

Animals have a 3D compass in the brain
Egyptian fruit bat
Certain neurones in the brain were only activated when the bat's head was at a particular 3D angle.

New research suggests animals have an internal navigation system

For the first time, scientists have found evidence suggesting animals have a 3D compass in the brain that acts as an internal navigation system.

In humans, vertigo and the momentary loss of our sense of direction are thought to be due to a temporary malfunction in the brain circuit that works as a 3D compass.

Research published in Nature suggests bats have neurons in the brain to help them sense which way their head is pointed.

The research team believe their findings also apply to non-flying species, including squirrels and monkeys.

Mammals have three types of brain cell - "place" and "grid" cells which act like a GPS in allowing animals to keep track of their position, and "head direction" cells which act like a compass. Previously, head direction cells have only been studied in 2D settings in rats.

Scientists from the Weizmann Institute in Israel developed tracking technology to video monitor the bats' head direction. It also allowed them to observe the movements of wild Egyptian fruit bats.

Certain neurones in the brain were only activated when the bat's head was at a particular 3D angle.

In addition, researchers discovered for the first time that the sense of vertical direction is computed separately to the horizontal direction. It is thought the 2D head-direction cells are for movement along surfaces (such as driving in a car for humans), while the 3D cells are for complex manoeuvres such as climbing trees or piloting an aircraft.

Professor May-Britt Moser, one of the 2014 Nobel Prize in Physiology or Medicine laureates, said: "This blueprint can be applied to other species that experience 3D in a more limited sense."

Image ©Wikipedia/CC BY-SA 3.0/Zoharby

Become a member or log in to add this story to your CPD history

Practices urged to audit neutering data

News Story 1
 RCVS Knowledge has called on vet practices to audit their post-operative neutering outcomes.

It follows the release of the 2024 NASAN benchmarking report, which collates data from neutering procedures performed on dogs, cats and rabbits.

The benchmarking report enables practices in the UK and Ireland to compare their post-operative outcomes to the national average. This includes the rate of patients lost to follow-up, which in 2024 increased to 23 per cent.

Anyone from the practice can submit the data using a free template. The deadline for next report is February 2026.

Visit the RCVS Knowledge website to complete an audit. 

Click here for more...
News Shorts
New guidance for antibiotic use in rabbits

New best practice guidance on the responsible use of antibiotics in rabbits has been published by the BSAVA in collaboration with the Rabbit Welfare Association & Fund (RWA&F).

The guidance is free and has been produced to help veterinary practitioners select the most appropriate antibiotic for rabbits. It covers active substance, dose and route of administration all of which are crucial factors when treating rabbits owing to the risk of enterotoxaemia.

For more information and to access the guide, visit the BSAVALibrary.