Your data on MRCVSonline
The nature of the services provided by Vision Media means that we might obtain certain information about you.
Please read our Data Protection and Privacy Policy for details.

In addition, (with your consent) some parts of our website may store a 'cookie' in your browser for the purposes of
functionality or performance monitoring.
Click here to manage your settings.
If you would like to forward this story on to a friend, simply fill in the form below and click send.

Your friend's email:
Your email:
Your name:
 
 
Send Cancel

Parasitic fish could lead to more effective treatments for brain disease
Molecules from sea lampreys could be combined with other therapies to deliver drugs directly to the human brain.

Researchers assess the effectiveness of sea lamprey molecules on glioblastoma

A parasitic fish renowned for its distinctive, disc-shaped mouth could pave the way to more effective treatments for brain conditions, including cancer and stroke.
 
Native to the Northern Hemisphere, the sea lamprey is an ancient species of fish that closely resembles an eel. Its mouth is filled with sharp, hook-shaped teeth, that it uses to feed off other fish.

Now, new research suggests that molecules from sea lampreys could be combined with other therapies to deliver drugs directly to the human brain.

The study, led by the universities of Wisconsin-Madison and Texas, looked at a set of molecules from the lamprey’s immune system called VLRs (variable lymphocyte receptors). While most medicines target specific features on or inside an individual’s cells, VLRs are different because they target the extracellular matrix (ECM) - a mesh of proteins and sugars that both surround and support brain cells.

Researchers believe these molecules could be adapted and combined with an array of other therapies, giving hope to people with brain tumours, multiple sclerosis, Alzheimer’s disease or even traumatic head injuries.

“This set of targeting molecules appears somewhat agnostic to the disease,” says Eric Shusta, a professor of chemical and biological engineering at UW–Madison. “We believe it could be applied as a platform technology across multiple conditions.”

The technology takes advantage that many diseases disrupt the blood-brain barrier. This is what lines the blood vessels of the central nervous system and protects the brain from toxins and pathogens.
In some illnesses, this blood-brain barrier leaks around the disease area, offering a unique entry point for any treatment.

In the study, researchers assessed the effectiveness of VLRs in mouse models of glioblastoma, an incurable brain cancer. The team bound the VLRs to an approved chemotherapy drug called doxorubicin and found that the treatment prolonged the rodents’ survival.

The team note that it’s possible that drugs delivered to the matrix could accumulate to a much higher therapeutic dose than medicines aimed at the inside of cells.

Collaborator John Kuo, a neurosurgeon-scientist and professor of neurosurgery at the University of Texas at Austin, said: “Similar to water soaking into a sponge, the lamprey molecules will potentially accumulate much more of the drug in the abundant matrix around cells compared to specific delivery to cells.”

The team are now planning to link the VLR molecules to additional anti-cancer drugs, such as immunotherapy agents that activate a patient’s own immune system to destroy tumours. They also see promise in using the molecules as diagnostic tools to detect blood-brain barrier disruption.

“I’m excited about trying this strategy in different disease model systems,” says Kuo. “There are several disease processes that disrupt the blood-brain barrier and we could conceive of delivering a variety of different therapies with these molecules.”

The study, Identification of variable lymphocyte receptors that can target therapeutics to pathologically exposed brain extracellular matrix, is published in the journal Science Advances.

Image (C) NOAA Great Lakes Environmental

Become a member or log in to add this story to your CPD history

Greyhound Board announces change to vaccination guidance

News Story 1
 The Greyhound Board of Great Britain has published new vaccination guidance, with all greyhounds registered from 1 January, 2027 required to have the L4 leptospirosis vaccination, rather than L2.

The change comes in response to the reduced availability of the 'L2' Leptospirosis vaccine across the UK, and aims to support best biosecurity practice across the racing greyhound population.

GBGB veterinary director Simon Gower, said "While rare, Leptospirosis is a serious infectious disease that can affect both dogs and humans, so it is vital that we offer our greyhounds the broadest possible protection.  

Click here for more...
News Shorts
Free webinar explores congenital heart disease in dogs

A free webinar is to provide veterinary professionals, dog breeders and pet owners an new insights into congenital heart disease.

Chris Linney, a cardiology specialist and Veterinary Cardiovascular Society (VSC) member, will present the webinar from 7.00pm to 8.30pm on Wednesday, 12 November.

Dr Linney will explore the types, causes and clinical presentation of congenital heart conditions. This will include diagnostic approaches, treatment pathways and emerging research opportunities.

The session is the third to be organised by The Kennel Club, with the VCS, following an introductory webinar and a talk on acquired heart disease. Dr Linney's webinar consists of a one-hour presentation, followed by a 30-minute question and answer session.

Dr Linney said: "This webinar will be an opportunity to deepen understanding - not just of the diseases themselves, but of how breeders, vets and owners can work together to support affected dogs and improve outcomes for future generations."

Click here to register for the webinar.