Your data on MRCVSonline
The nature of the services provided by Vision Media means that we might obtain certain information about you.
Please read our Data Protection and Privacy Policy for details.

In addition, (with your consent) some parts of our website may store a 'cookie' in your browser for the purposes of
functionality or performance monitoring.
Click here to manage your settings.
If you would like to forward this story on to a friend, simply fill in the form below and click send.

Your friend's email:
Your email:
Your name:
 
 
Send Cancel

Animals have a 3D compass in the brain
Egyptian fruit bat
Certain neurones in the brain were only activated when the bat's head was at a particular 3D angle.

New research suggests animals have an internal navigation system

For the first time, scientists have found evidence suggesting animals have a 3D compass in the brain that acts as an internal navigation system.

In humans, vertigo and the momentary loss of our sense of direction are thought to be due to a temporary malfunction in the brain circuit that works as a 3D compass.

Research published in Nature suggests bats have neurons in the brain to help them sense which way their head is pointed.

The research team believe their findings also apply to non-flying species, including squirrels and monkeys.

Mammals have three types of brain cell - "place" and "grid" cells which act like a GPS in allowing animals to keep track of their position, and "head direction" cells which act like a compass. Previously, head direction cells have only been studied in 2D settings in rats.

Scientists from the Weizmann Institute in Israel developed tracking technology to video monitor the bats' head direction. It also allowed them to observe the movements of wild Egyptian fruit bats.

Certain neurones in the brain were only activated when the bat's head was at a particular 3D angle.

In addition, researchers discovered for the first time that the sense of vertical direction is computed separately to the horizontal direction. It is thought the 2D head-direction cells are for movement along surfaces (such as driving in a car for humans), while the 3D cells are for complex manoeuvres such as climbing trees or piloting an aircraft.

Professor May-Britt Moser, one of the 2014 Nobel Prize in Physiology or Medicine laureates, said: "This blueprint can be applied to other species that experience 3D in a more limited sense."

Image ©Wikipedia/CC BY-SA 3.0/Zoharby

Become a member or log in to add this story to your CPD history

Webinar to explore AMR in vet dentistry

News Story 1
 The WSAVA has invited veterinary professionals to a webinar on responsible antibiotic usage in dentistry.

On 19 November 2025, at 1am, Dr J Scott Weese and Dr Brooke Niemiec will share the latest advice for antimicrobial use. They will present research on oral bacterology, and explain how attendees can choose appropriate antibiotics.

The session will cover pre-, intra- and post-operative guidelines, with recommendations for various pathologies.

The webinar is designed to support veterinary professionals to make informed decisions and tackle antimicrobial resistance.

Attendees can register here

Click here for more...
News Shorts
Bluetongue reaches Wales for first time in 2025

The Animal and Plant Health Agency (APHA) has revealed that bluetongue has been confirmed in Wales for the first time in 2025.

In their latest statistics, APHA records a total of 109 cases of BTV-3 or BTV-8 in Great Britain in the 2025-2026 vector season.

The total number of BTV-3 cases in Great Britain this season is 107. This includes 103 cases within the England restricted zone and four cases in Wales.

There has also been two cases of BTV-8, which were both in Cornwall.

As a result of the cases in Wales, a Temporary Control Zone (TCZ) is enforced in Monmouthshire. Animals can move freely under general license within the England Restricted Zone, however animals with suspected bluetongue must stay on their holding.

All premises testing positive for blue tongue can be viewed on this map.