Your data on MRCVSonline
The nature of the services provided by Vision Media means that we might obtain certain information about you.
Please read our Data Protection and Privacy Policy for details.

In addition, (with your consent) some parts of our website may store a 'cookie' in your browser for the purposes of
functionality or performance monitoring.
Click here to manage your settings.
If you would like to forward this story on to a friend, simply fill in the form below and click send.

Your friend's email:
Your email:
Your name:
 
 
Send Cancel
One gene lost, one limb regained?
The Wistar Institute demonstrate that mice that lack the p21 gene gain the ability to regenerate lost or damaged tissue.
Scientists from the Wistar Institute have identified a single gene that prevents regeneration in mammals.

A quest that began over a decade ago with a chance observation has reached a milestone: the identification of a gene that may regulate regeneration in mammals. In a recent report, researchers from The Wistar Institute demonstrate that mice that lack the p21 gene gain the ability to regenerate lost or damaged tissue. The absence of this single gene, called p21, confers a healing potential in mice long thought to have been lost through evolution and reserved for creatures like flatworms, sponges, and some species of salamander.

Unlike typical mammals, which heal wounds by forming a scar, these mice begin by forming a blastema, a structure associated with rapid cell growth and de-differentiation as seen in amphibians. According to the Wistar researchers, the loss of p21 causes the cells of these mice to behave more like embryonic stem cells than adult mammalian with rapid cell growth
While we are just beginning to understand the repercussions of these findings, perhaps, one day we’ll be able to accelerate healing in humans
and de-differentiation as seen in amphibians. According to the Wistar researchers, the loss of p21 causes the cells of these mice to behave more like embryonic stem cells than adult mammalian cells, and their findings provide solid evidence to link tissue regeneration to the control of cell division.

“Much like a newt that has lost a limb, these mice will replace missing or damaged tissue with healthy tissue that lacks any sign of scarring,” said the project’s lead scientist Ellen Heber-Katz, Ph.D., a professor in Wistar’s Molecular and Cellular Oncogenesis program. “While we are just beginning to understand the repercussions of these findings, perhaps, one day we’ll be able to accelerate healing in humans by temporarily inactivating the p21 gene.”

Become a member or log in to add this story to your CPD history

Prof Joanne Webster elected as Fellow of the Royal Society

News Story 1
 Joanne Webster, a professor of parasitic diseases at the RVC, has been elected as a Fellow of the Royal Society (FRS).

An infectious disease expert, Prof Webster is known for promoting a One Health approach to disease control.

She completed her doctoral research in zoonotic disease and parasite-host interactions, and has since earned widespread recognition for contributions to parasitology and global health.

Prof Webster said: "I am truly honoured, and somewhat stunned, to be recognised alongside such an exceptional group of scientists." 

Click here for more...
News Shorts
Germany FMD import restrictions eased

The UK government has lifted the import restrictions placed on FMD-susceptible commodities from Germany.

The decision comes after the country was recognised as foot-and-mouth disease free without vaccination on 14 May.

Imports of FMD-susceptible animals and their by-products from Germany were originally banned, after the country reported a case of FMD near Brandenburg in January. In March, the UK government permitted imports from outside of the outbreak zone.

Germany will now be able to import FMD-susceptible animals and their by-products into the UK, providing they meet other import conditions.

The decision follows rigorous technical assessment of measures in Germany. Defra says it will not hesitate respond to FMD outbreaks.