Your data on MRCVSonline
The nature of the services provided by Vision Media means that we might obtain certain information about you.
Please read our Data Protection and Privacy Policy for details.

In addition, (with your consent) some parts of our website may store a 'cookie' in your browser for the purposes of
functionality or performance monitoring.
Click here to manage your settings.
If you would like to forward this story on to a friend, simply fill in the form below and click send.

Your friend's email:
Your email:
Your name:
 
 
Send Cancel
One gene lost, one limb regained?
The Wistar Institute demonstrate that mice that lack the p21 gene gain the ability to regenerate lost or damaged tissue.
Scientists from the Wistar Institute have identified a single gene that prevents regeneration in mammals.

A quest that began over a decade ago with a chance observation has reached a milestone: the identification of a gene that may regulate regeneration in mammals. In a recent report, researchers from The Wistar Institute demonstrate that mice that lack the p21 gene gain the ability to regenerate lost or damaged tissue. The absence of this single gene, called p21, confers a healing potential in mice long thought to have been lost through evolution and reserved for creatures like flatworms, sponges, and some species of salamander.

Unlike typical mammals, which heal wounds by forming a scar, these mice begin by forming a blastema, a structure associated with rapid cell growth and de-differentiation as seen in amphibians. According to the Wistar researchers, the loss of p21 causes the cells of these mice to behave more like embryonic stem cells than adult mammalian with rapid cell growth
While we are just beginning to understand the repercussions of these findings, perhaps, one day we’ll be able to accelerate healing in humans
and de-differentiation as seen in amphibians. According to the Wistar researchers, the loss of p21 causes the cells of these mice to behave more like embryonic stem cells than adult mammalian cells, and their findings provide solid evidence to link tissue regeneration to the control of cell division.

“Much like a newt that has lost a limb, these mice will replace missing or damaged tissue with healthy tissue that lacks any sign of scarring,” said the project’s lead scientist Ellen Heber-Katz, Ph.D., a professor in Wistar’s Molecular and Cellular Oncogenesis program. “While we are just beginning to understand the repercussions of these findings, perhaps, one day we’ll be able to accelerate healing in humans by temporarily inactivating the p21 gene.”

Become a member or log in to add this story to your CPD history

Applications open for MMI research grants

News Story 1
 RCVS' Mind Matters Initiative (MMI) has launched round two of its veterinary mental health research grants.

Researchers have until 11.59pm on Wednesday, 28 May 2025 to apply for a grant for research which reflects MMI's 2025 focus areas.

Only one Impact Grant was awarded last year, and so this year there are two Discovery Grants and one Impact Grants available. Each Discovery Grant is worth £5,000 and the Impact Grant is worth £15,000.

For more information or to apply, email researchgrants@rcvs.org.uk to contact the MMI team.

 

Click here for more...
News Shorts
Germany livestock import ban lifted

The UK government has amended its ban on the import of livestock, meat and dairy products from Germany.

Defra said the decision follows 'rigorous technical assessment' of the measures applied and the current situation. "If the situation changes, we will not hesitate to take necessary action in response to the FMD outbreaks in the European Union to protect our domestic biosecurity," it said.

The ban was implemented in January following an outbreak of foot and mouth disease (FMD) near Berlin. Personal imports of meat, milk and dairy products will remain in place at a country level.