Your data on MRCVSonline
The nature of the services provided by Vision Media means that we might obtain certain information about you.
Please read our Data Protection and Privacy Policy for details.

In addition, (with your consent) some parts of our website may store a 'cookie' in your browser for the purposes of
functionality or performance monitoring.
Click here to manage your settings.
If you would like to forward this story on to a friend, simply fill in the form below and click send.

Your friend's email:
Your email:
Your name:
 
 
Send Cancel
Wasps Create a Buzz with Antibiotics
Scientists have found that Digger wasps of the genus Philanthus, so-called beewolves, house beneficial bacteria on their cocoons that guarantee protection against harmful microorganisms.

Scientists of the Max Planck Institute for Chemical Ecology in Jena and researchers at the University of Regensburg and the Jena Leibniz Institute for Natural Product Research discovered that bacteria of the genus Streptomyces produce a cocktail of nine different antibiotics, thereby fending off invading pathogens.

Many insects spend a part of their life underground and are exposed to the risk of fungal or bacterial infections. This is also the case for many digger wasp species that construct underground nests. Unlike bees that use pollen and nectar as food to nurture their larvae, digger wasps hunt insects to feed their offspring. Because of the warm and humid conditions as well as the large amounts of organic material in their subterranean nest, both their food supply and their larvae are endangered by pathogens. Mold and bacterial infection are a major threat and can cause larval death in many cases.

Antibiotics on the surface of the cocoon, produced by symbionts, guarantee protection against microbial pests during such a protracted developmental stage.

An analysis of the substances involved not only contributes to the understanding of the evolution of such symbioses, but could also lead to the discovery of interesting new drug candidates for human medicine.
Using imaging techniques based on mass spectrometry, the antibiotics could be displayed in vivo on the cocoon’s exterior surface. Moreover, it was shown that the use of different kinds of antibiotics provides an effective protection against infection with a multitude of different pathogenic microorganisms. Thus, for millions of years beewolves have been taking advantage of a principle that is known as combination prophylaxis in human medicine.

With their work the researchers are breaking new ground: "Astonishingly, little is known about the ecological importance of antibiotics in their natural environment. Supported by mass spectrometric imaging we are now able to better understand the natural role of antibiotic substances in the environment," says Aleš Svatoš, leader of the mass spectrometry research group.

"We suppose that protective symbioses like the ones between beewolves and Streptomyces bacteria are much more common in the animal kingdom than previously assumed," says Martin Kaltenpoth. "An analysis of the substances involved not only contributes to the understanding of the evolution of such symbioses, but could also lead to the discovery of interesting new drug candidates for human medicine."

Become a member or log in to add this story to your CPD history

Prof Joanne Webster elected as Fellow of the Royal Society

News Story 1
 Joanne Webster, a professor of parasitic diseases at the RVC, has been elected as a Fellow of the Royal Society (FRS).

An infectious disease expert, Prof Webster is known for promoting a One Health approach to disease control.

She completed her doctoral research in zoonotic disease and parasite-host interactions, and has since earned widespread recognition for contributions to parasitology and global health.

Prof Webster said: "I am truly honoured, and somewhat stunned, to be recognised alongside such an exceptional group of scientists." 

Click here for more...
News Shorts
Germany FMD import restrictions eased

The UK government has lifted the import restrictions placed on FMD-susceptible commodities from Germany.

The decision comes after the country was recognised as foot-and-mouth disease free without vaccination on 14 May.

Imports of FMD-susceptible animals and their by-products from Germany were originally banned, after the country reported a case of FMD near Brandenburg in January. In March, the UK government permitted imports from outside of the outbreak zone.

Germany will now be able to import FMD-susceptible animals and their by-products into the UK, providing they meet other import conditions.

The decision follows rigorous technical assessment of measures in Germany. Defra says it will not hesitate respond to FMD outbreaks.