Your data on MRCVSonline
The nature of the services provided by Vision Media means that we might obtain certain information about you.
Please read our Data Protection and Privacy Policy for details.

In addition, (with your consent) some parts of our website may store a 'cookie' in your browser for the purposes of
functionality or performance monitoring.
Click here to manage your settings.
If you would like to forward this story on to a friend, simply fill in the form below and click send.

Your friend's email:
Your email:
Your name:
 
 
Send Cancel

Gliding barn owls could inform more aerodynamic design in aircraft
Researchers predicted the drag production for 16 gliding flights with a range of tail postures.
New research from the RVC could reduce drag in small aircraft.

New research from the Royal College of Veterinary Studies (RVC) has shown that the tail postures of barn owls can be used to minimise drag.

Birds have always informed aerodynamic design in aeronautical engineering, and many aeronautical designs reduce the amount of drag by avoiding the use of the tail. However, the findings of the RVC's study suggest that certain positions of the tail could reduce drag and improve overall flight efficiency for smaller aircraft. 

Published in the Journal of the Royal Society Interface, the study provided rigorous quantitative evidence of the avian tail in reducing drag by capturing video with 12 high-speed cameras of a barn owl gliding through an experimental flight corridor. 

Using the footage, researchers were able to develop a comprehensive analytical drag model, calibrated by high-fidelity computational fluid dynamics (CFD). This model was then able to be studied to investigate the aerodynamic action of the barn owls' tails by virtually manipulating the posture of a gliding barn owl. 

In observing postures in a variety of different contexts using the model, researchers discovered that by changing the position of its tail, a barn owl can minimise overall drag by using its tail for aerodynamic lift, and therefore reducing the lift needed from its wings. 

Professor Jim Usherwood, corresponding author of the paper, commented: “The combination of a beautifully trained owl and modern methods of filming, surface reconstruction, computational fluid dynamics and a bit of new aerodynamic theory allowed us to approach a really ‘what if’ question. 

“We were a bit surprised that the tail was producing so much lift for the gliding barn owl, but ‘what if’ she used the tail differently? Answer – there would have been a lot more drag!”

Become a member or log in to add this story to your CPD history

Applications open for MMI research grants

News Story 1
 RCVS' Mind Matters Initiative (MMI) has launched round two of its veterinary mental health research grants.

Researchers have until 11.59pm on Wednesday, 28 May 2025 to apply for a grant for research which reflects MMI's 2025 focus areas.

Only one Impact Grant was awarded last year, and so this year there are two Discovery Grants and one Impact Grants available. Each Discovery Grant is worth £5,000 and the Impact Grant is worth £15,000.

For more information or to apply, email researchgrants@rcvs.org.uk to contact the MMI team.

 

Click here for more...
News Shorts
BBC Radio 4 documentary addresses corporate fees

BBC Radio 4's File on 4 Investigates has released a documentary exploring how corporate-owned veterinary practices may be inflating bills to increase profit.

Released on 15 April, 'What's Happening To Your Vet Bills?' revealed the policies which many corporate groups have in place to increase their profits. This included targets and upgrades which veterinary teams are tasked with meeting on a regular basis.

It also features Anrich Vets, an independently-owned practice based in Wigan. Following the case of Staffordshire terrier Benjy, who is diagnosed with a tumour, the documentary shares how the team were able to offer contextualised care and advice to make the procedure as affordable as possible for his owners.

The documentary can be heard on demand on BBC iPlayer.