Your data on MRCVSonline
The nature of the services provided by Vision Media means that we might obtain certain information about you.
Please read our Data Protection and Privacy Policy for details.

In addition, (with your consent) some parts of our website may store a 'cookie' in your browser for the purposes of
functionality or performance monitoring.
Click here to manage your settings.
If you would like to forward this story on to a friend, simply fill in the form below and click send.

Your friend's email:
Your email:
Your name:
 
 
Send Cancel

Gene editing technique eliminates population of mosquitoes
The technique was utilised to target the Anopheles gambiae mosquito that is responsible for malaria transmission.
Study offers hope in the fight against malaria

Scientists have used gene editing technology to wipe out a population of caged mosquitoes for the first time.

Researchers from Imperial College London used a technique called ’gene drive’ to spread a genetic modification that blocks female production.

The technique was utilised to target the Anopheles gambiae mosquito that is responsible for malaria transmission. Researchers hope that mosquitoes carrying a gene drive could be released in the future to control wild mosquito populations.

Lead researcher Professor Andrea Crisanti, from the Department of Life Sciences at Imperial, said: “This breakthrough shows that gene drive can work, providing hope in the fight against a disease that has plagued mankind for centuries.

“There is still more work to be done, both in terms of testing the technology in larger lab-based studies and working with affected countries to assess the feasibility of such an intervention.”

In the study, the team targeted a gene called ‘doublesex’ which is responsible for whether a mosquito develops as a male or as a female. They engineered a gene drive solution to alter a region of the doublesex gene that is responsible for female development.

Males and females who carried the modified gene showed no changes. However, females with two copies of the modified gene displayed male and female characteristics, failed to bite, and did not lay eggs.

“It will still be at least 5-10 years before we consider testing any mosquitoes with gene drive in the wild, but now we have some encouraging proof that we’re on the right path,” Professor Crisanti continued. “Gene drive solutions have the potential one day to expedite malaria eradication by overcoming the barriers of logistics in resource-poor countries.”

The study is published in the journal Nature Biotechnology.

Become a member or log in to add this story to your CPD history

Birmingham Dogs Home makes urgent appeal

News Story 1
 Birmingham Dogs Home has issued an urgent winter appeal as it faces more challenges over the Christmas period.

The rescue centre has seen a dramatic increase in dogs coming into its care, and is currently caring for over 200 dogs. With rising costs and dropping temperatures, the charity is calling for urgent support.

It costs the charity £6,000 per day to continue its work.

Fi Harrison, head of fundraising and communications, said: "It's heart-breaking for our team to see the conditions some dogs arrive in. We really are their last chance and hope of survival."

More information about the appeal can be found here

Click here for more...
News Shorts
Avian flu confirmed at premises in Cornwall

A case of highly pathogenic avian influenza H5N1 has been detected in commercial poultry at a premises near Rosudgeon, Cornwall.

All poultry on the infected site will be humanely culled, and a 3km protection zone and 10km surveillance zone have been put in place. Poultry and other captive birds in the 3km protection zone must be housed.

The case is the second avian flu case confirmed in commercial poultry this month. The H5N5 strain was detected in a premises near Hornsea, East Riding of Yorkshire, in early November. Before then, the disease had not been confirmed in captive birds in England since February.

The UK chief veterinary officer has urged bird keepers to remain alert and practise robust biosecurity.

A map of the disease control zones can be found here.