Your data on MRCVSonline
The nature of the services provided by Vision Media means that we might obtain certain information about you.
Please read our Data Protection and Privacy Policy for details.

In addition, (with your consent) some parts of our website may store a 'cookie' in your browser for the purposes of
functionality or performance monitoring.
Click here to manage your settings.
If you would like to forward this story on to a friend, simply fill in the form below and click send.

Your friend's email:
Your email:
Your name:
 
 
Send Cancel

Biomimicry could help treat human disease
dolphins
The laboratory began tracing the insulin-sensitising hormone, adiponectin, in populations of wild bottlenose dolphins.

Dolphins found to possess important antioxidant protein

A recent study has revealed antioxidant proteins found in dolphins may hold clues about potential treatments for degenerative diseases in humans.

The study commenced when Dr Michael Janech, director of the Medical University of South Carolina's (MUSC's) Nephrology Proteomics Laboratory, learned that managed dolphins in the US Navy Marine Mammal programme were living much longer than wild dolphins.

The managed group were developing diseases consistent with human metabolic syndrome, including insulin resistance and fatty liver disease.

Through funding provided by the Office of Naval Research, Dr Janech joined forces with Stephanie Venn-Watson, director of the National Marine Mammal Foundation’s Translational Medicine Research Programme (NMMF) in San Diego, and Randall Wells of the Chicago Zoological Society’s (CZS) Sarasota Dolphin Research Programme in Florida, to explore the inconsistency further.

The laboratory began tracing the insulin-sensitising hormone, adiponectin, in populations of wild bottlenose dolphins. The team also analysed basic proteomic differences in human and dolphin serums so as to verify the relevance of their studies.

The research revealed that 11 proteins were around 100 times more prevalent in dolphin serum than in humans. This data came as a surprise given that key proteins in mammals are usually stable across species.

The group initially disregarded this finding as a difference in genetic ancestry - some mammals diverged off the evolutionary tree of development and evolved into odd-toed or hoofed mammals and primates.

Bottlenose dolphins evolved from even-toed ungulates, such as pigs, deer and giraffes. To verify this, the scientists recorded the serum proteome in pigs. Again, the team were stunned by the results that showed five of the proteins had a 100-fold difference, including vanin-1 and adiponectin. These findings could not be excluded as an evolutionary anomaly.

Adiponectin is known to be elevated in dolphins, however, vanin-1 elevation was a new finding. These increased levels have been linked to reduced liver function in wild dolphins that may suggest a protective effect in avoiding metabolic syndrome. The team also discovered that vanin-1 played a key role in the production of vitamin B5. Through the production of vitamin B5, an antioxidant known to protect tissues from hypoxia and re-oxygenation when diving and resurfacing, was revealed.

This revelation explains the reason why humans suffer organ damage when oxygen supplies are cut off and dolphins do not. Dolphins are capable of restricting blood flow to vital organs, including the heart, liver, lungs and kidneys, for long periods of time, without suffering any injury.

Dr Janech said: “This is the first step. We wanted to ask what’s different in an animal that can do something that would hurt a human, and [that] they do every single day. And can we take it back to human medicine?”

Dr Janech believes there is much to be learned from the field of biomimicry, particularly when it is aligned with the field of proteomics.

Janech and his colleagues will monitor proteomes from a number of different diving and non-diving marine mammals, as well as land-bound mammals.

They have continued their current collaboration, whilst also including graduate students from the College of Charleston’s Grice Marine Laboratory and investigators from the National Institutes of Standards and Technology at Hollings Marine Laboratory, in order to help with their measurements. 

Become a member or log in to add this story to your CPD history

BSAVA partners with BVA Live 2026

News Story 1
 BSAVA is to partner with BVA Live (11-12 June 2026) to champion clinical research.

The organisation will be supporting BVA Live's Clinical Abstracts programme, showcasing selected abstracts of veterinary research throughout the event.

The clinical abstracts can be on any small animal veterinary subject, and must be based on research undertaken in industry, practice or academia. Abstracts can be presented in poster or oral formats.

Submissions will open on 15th December 2025, and close on 6th March 2026. You can register interest here

Click here for more...
News Shorts
Nominations open for RCVS and VN Council elections

The nomination period for the 2026 RCVS Council and VN Council elections is now open, with three veterinary surgeon seats and two veterinary nurse seats available.

Prospective candidates can download an information pack and nomination form from the RCVS website. Individuals can nominate themselves for the elections, with the results to be announced in the spring.

Clare Paget, the recently appointed RCVS Registrar and elections returning officer, said: "If you want to play your part in influencing and moulding how the professions are regulated, and making key decisions on matters of great importance to your peers, the public and animal health and welfare, please consider standing for RCVS Council or VN Council next year."

Nominations close at 5pm on Saturday, 31 January 2026.