Your data on MRCVSonline
The nature of the services provided by Vision Media means that we might obtain certain information about you.
Please read our Data Protection and Privacy Policy for details.

In addition, (with your consent) some parts of our website may store a 'cookie' in your browser for the purposes of
functionality or performance monitoring.
Click here to manage your settings.
If you would like to forward this story on to a friend, simply fill in the form below and click send.

Your friend's email:
Your email:
Your name:
 
 
Send Cancel

Oxygen levels key to evolution of early skeletal animals
Fred Bowyer uses geological hammer to collect samples
Researcher Fred Bowyer uses geological hammer to collect samples.

Study evidences likely cause of mobility and skeleton formation

The University of Oxford have conducted fieldwork in Namibia to support a hypothesis surrounding the emergence of more complex, skeletal animals 550 million years ago. The study addresses the puzzling issue of why more complex animals took so long to emerge.

Geochemists, palaeoecologists and geologists looked at rock samples containing fossils from the ancient seafloor in the Nama Group to try and ascertain the chemical composition of the water when they were formed.

Samples from anoxic and poorly oxygenated regions were compared with those from the well-oxygenated surface waters and demonstrated that oxygen availability was fundamental in the development of skeletons, mobility and many other identifiable features of modern animals.

Dr Rosalie Tostevin, a postdoctoral researcher in the Department of Earth Sciences at Oxford University and lead author said: “By teasing apart waters with high and low levels of oxygen, and demonstrating that early skeletal animals were restricted to well oxygenated waters, we have provided strong evidence that the availability of oxygen was a key requirement for the development of these animals.”

The evolution of early Cloudina, Namacalathus and Namapoika animals prior to the Cambrian period has long puzzled scientists and Dr Tostevin added: “We looked at the last 10 million years of the Proterozoic Eon, when although the earth looked very different, some of the major animal groups we recognise today began to appear. Our results tell us that there is a link between the environment and the evolution that took place.”

The study has been published in the journal Nature Communications.

Image © Rosalie Tostevin

 

Become a member or log in to add this story to your CPD history

Webinar to explore AMR in vet dentistry

News Story 1
 The WSAVA has invited veterinary professionals to a webinar on responsible antibiotic usage in dentistry.

On 19 November 2025, at 1am, Dr J Scott Weese and Dr Brooke Niemiec will share the latest advice for antimicrobial use. They will present research on oral bacterology, and explain how attendees can choose appropriate antibiotics.

The session will cover pre-, intra- and post-operative guidelines, with recommendations for various pathologies.

The webinar is designed to support veterinary professionals to make informed decisions and tackle antimicrobial resistance.

Attendees can register here

Click here for more...
News Shorts
Dechra launches checklist for veterinary sustainability

Global animal health specialist Dechra has announced the world's first Veterinary Green Theatre Checklist (VGTC) to help make surgery more sustainable.

Endorsed by leading veterinary organisations, including the BEVA, BVNA and RCVS Knowledge, the checklist is designed to reduce the environmental footprint of veterinary care, while supporting better animal health outcomes.

The checklist was launched at the World Congress of Veterinary Anaesthesia and Analgesia in Paris and will be followed by an internal training and awareness campaign. For more information, visit dechra.com