Your data on MRCVSonline
The nature of the services provided by Vision Media means that we might obtain certain information about you.
Please read our Data Protection and Privacy Policy for details.

In addition, (with your consent) some parts of our website may store a 'cookie' in your browser for the purposes of
functionality or performance monitoring.
Click here to manage your settings.
If you would like to forward this story on to a friend, simply fill in the form below and click send.

Your friend's email:
Your email:
Your name:
 
 
Send Cancel

Zebrafish insights could help humans reach Mars
Scientists found that torpor reduced the metabolic rate in zebrafish and created a radioprotective effect.
Researchers assess whether induced torpor could protect astronauts against radiation.

New insights into the zebrafish could help humans get to Mars by understanding how a type of hibernation, known as induced torpor, may protect against radiation.

Torpor is a reduced state of physical or mental activity in animals that protects them against harsh conditions, such as low temperatures and food shortages.

Scientists believe that reproducing torpor in humans could protect astronauts against the harsh conditions of space exploration, such as radiation exposure, bone and muscle wastage, vascular problems and advanced ageing.

“Recent technological advancements have made space travel more accessible, however, long-term space travel is incredibly detrimental to human health,” explained Professor Gary Hardiman, a researcher at Queen’s University Belfast and senior author of the paper. 

“We set out to determine if induced torpor is a viable countermeasure to the harmful effects of spaceflight. If humans could replicate a similar model of hibernation we have observed in the zebrafish, it could increase our chances of making humans a spacefaring species.”

In the study, researchers exposed zebrafish to radiation similar to what would be experienced on a six-month mission to Mars. They noted that the radiation caused signs of oxidative stress, stress hormone signalling and halted the zebrafish cell cycle. 

Next, the team induced torpor in a second group of zebrafish exposed to the same amount of radiation. The researchers analysed the gene expression patterns to examine the protective effects of this state on both physical and mental activity. 

They found that torpor reduced the metabolic rate in zebrafiish and created a radioprotective effect, thereby protecting against the harmful effects of radiation. The findings are published in the journal MDPI Cells.

“Our results reveal that whilst in induced torpor, the zebrafish showed that a reduction in metabolism and oxygen concentration in cells promotes less oxidative stress and greater resistance to radiation,” said study co-first author Thomas Cahill. 

"These insights into how a reduction in metabolic rate can offer protection from radiation exposure and could help humans achieve a similar kind of hibernation, counter measuring the damage they currently face during spaceflight.”

Become a member or log in to add this story to your CPD history

Cold-water dip to raise funds for Vetlife

News Story 1
 The veterinary mental health charity Vetlife is inviting the veterinary community to join it for a sponsored cold-water dip.

The event will take place at Walpole Bay, Margate, on 17 May during Mental Health Awareness Week. Participants of all abilities can join in the challenge and are advised to bring a towel, a hot drink, a snack, and warm clothes to get changed into afterwards.

Those taking part are being asked to try to raise 100 each to support the work of the charity.

Details about how to take part can be found here

Click here for more...
News Shorts
Bluetongue low vector period ends

In an update to its bluetongue guidance, the Department for Environment, Food and Rural Affairs (Defra) has announced that the seasonal low vector period for the disease has ended.

With winter over, Defra is planning for a possible increase in cases as midges become more active. It has warned that farms along the east coast of England from Norfolk to Kent, and along the south coast from Kent to Devon, are at highest risk from infected midges blown over from northern Europe.

Since the virus was detected in England in November 2023, there have been 126 confirmed cases. The most recent case to be confirmed was on 1 March 2024.

Farmers are asked to continue to frequently monitor their livestock and ensure their animals and land are registered with the Animal and Plant Health Agency.